

SJBytes: DESENVOLVENDO O PENSAMENTO COMPUTACIONAL NO ENSINO MÉDIO TÉCNICO

Lucas da Silva Santos. Orientador: Prof. Me./MSc. EBTT Elias dos Santos Silva Junior Instituto Federal Fluminense - Campus São João da Barra - RJ BR 356 - KM 181 - Perigoso - São João da Barra - RJ CEP: 28200-000 E-mail: elias.junior@iff.edu.br/eliasjk@gmail.com

Campus São João da Barra

INTRODUÇÃO

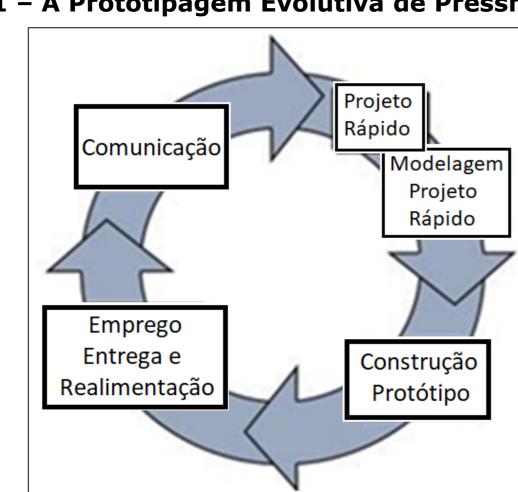
A educação brasileira possui diversos desafios, um dos principais é o de conduzir uma boa relação entre o saber e os interesses dos alunos, além de incluir as mulheres na ciência.

Os recursos pedagógicos mais significativos (O Maker) despertam o interesse dos alunos pelo conhecimento.

A inclusão das mulheres em projetos nas áreas das ciências exatas, costumam desenvolver as suas habilidades nos campos da ciência, do profissional e da academia.

O **Projeto SJBytes** utiliza estratégias da Robótica Educacional, Cultura Maker e da Computação Aplicada em projetos que são de interesses dos alunos e das alunas, estimulando a cooperação entre todos os seus participantes, independentemente, de gênero ou de qualquer outra barreira.

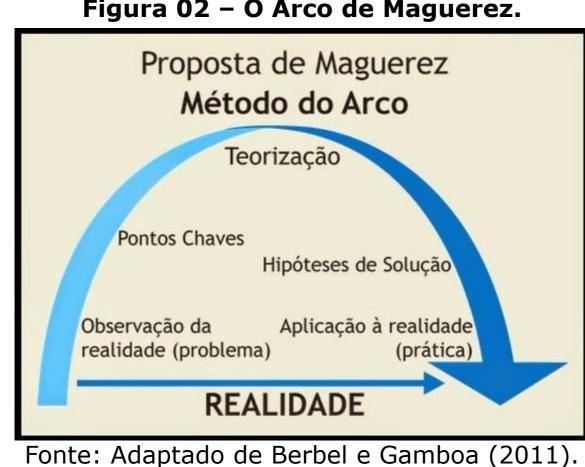
Diante desses desafios, buscamos responder: Como podemos desenvolver o Pensamento Computacional nos alunos e nas alunas do ensino médio técnico, preparando-os para o mercado de trabalho, cada vez mais integrado à indústria 4.0?


OBJETIVO GERAL

Criar modelos computacionais (O robô), por meio do Cultura Maker, aplicando as técnicas emprego da computacionais da Plataforma Arduino (IDE do Arduíno), (Tinker Cad), modelagem de simuladores (Fusion360) e PrusaSlicer, visando o desenvolvimento do Pensamento Computacional nos discentes do IFFSJB.

MATERIAIS E MÉTODOS

A prototipagem evolutiva de Pressman (2011) foi empregada como metodologia computacional que nos apoiou no desenvolvimento do sistema do "DanceBytes", conforme a representação da figura 01.


Figura 01 – A Prototipagem Evolutiva de Pressman(2011).

Fonte: Pressman (2011, p.63).

A segunda metodologia pedagógica consistiu no Arco Charles Maguerez, sendo empregada em apoio a construção de um Pensamento Computacional direcionada em todas as fases bem definidas por Pressman (2011), apresentado por Berbel e Gamboa (2011). Figura 02.

Figura 02 - O Arco de Maguerez.

Nesse esquema, constam cinco etapas que se desenvolvem a partir da realidade/recorte da realidade: Pontos Chave; Teorização; Observação Realidade; da Hipóteses de Solução e Aplicação à Realidade (prática).

RESULTADOS E DISCUSSÃO

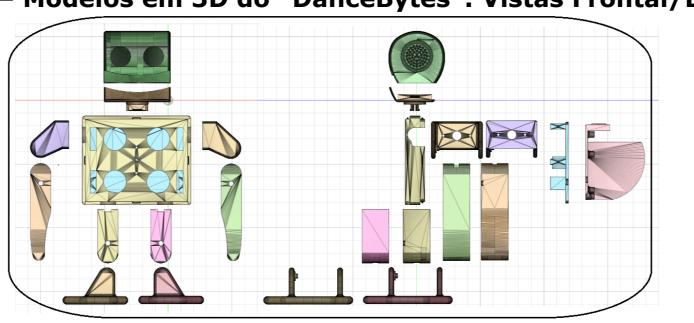
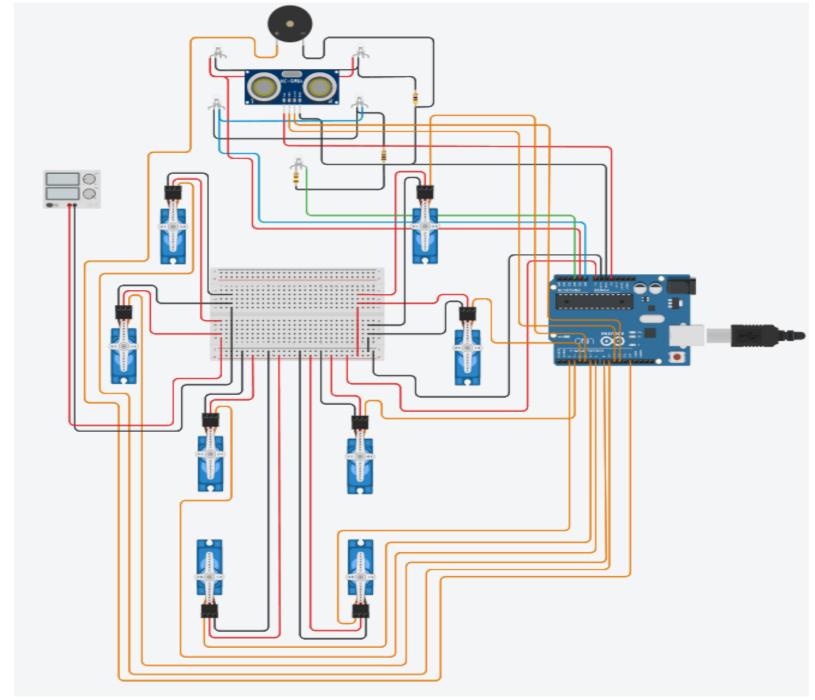

Seguimos no processo da "Comunicação" de Pressman "Arco de Maguerez" com os participantes que pesquisaram na Internet, um projeto básico, que atendesse os interesses da pesquisa (figura 04).

Figura 04 – O robô escolhido como projeto básico do pesquisa.

O "Projeto Rápido", batizado pelos alunos de "DanceBytes", foi prototipado, remodelado no Fusion360, fatiado no PrusaSlicer e preparado para ser impresso na impressora 3D, figura 05.

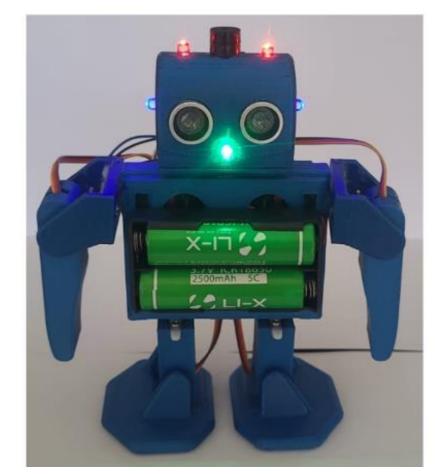

Figura 05 – Modelos em 3D do "DanceBytes". Vistas Frontal/Lateral.

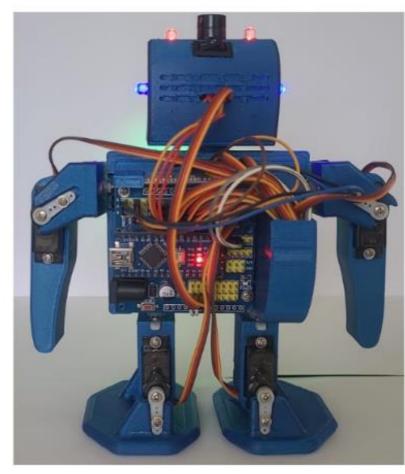
Fonte: Modelos adaptados do Fusion360 pelos autores (2024).

O esquema elétrico do protótipo foi modelado no simulador Tinker Cad, conforme ilustrado na figura 06.

Figura 06 – Esquema Elétrico do "DanceBytes". Tinker Cad.

Fonte: Esquema Elétrico adaptado do Tinker Cad pelos autores (2024).

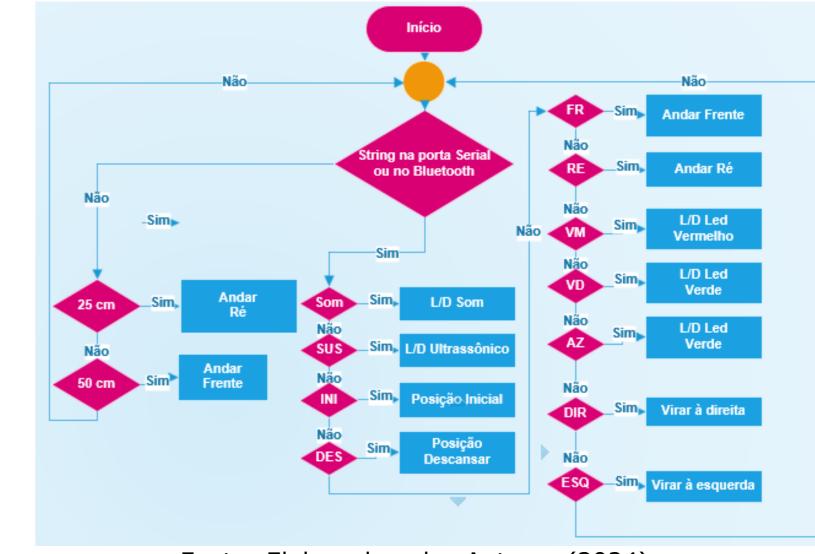

Apresentamos a montagem do robô (figura 07). Figura 07 - A montagem do "DanceBytes". Pela equipe do SJBytes.



Fonte: Montagem do robô pela equipe SJBytes. Autores (2024).

Apresentamos o robô "DanceBytes" (figura 08).

Figura 08 – O robô "DanceBytes". Frente e Verso do Projeto.



Fonte: O robô "DanceBytes". Autores (2024).

Após os testes do mecanismo e da programação funcionalidades desenvolvemos as do robô. Básica, Aplicamos a metodologia da prototipagem de Pressman e de Maguerez e em cada ciclo completo, adicionamos o sensor ultrassônico, os LEDs, a comunicação bluetooth e todos os movimentos do robô (figura 09).

Figura 09 - A lógica de programação empregada no "DanceBytes".

Fonte: Elaborado pelos Autores (2024).

Apesar dos diversos desafios enfrentados, a equipe conseguiu avançar com as etapas do projeto, o aplicando as metodologias de desenvolvimento propostas pela pesquisa.

CONSIDERAÇÕES FINAIS

Os resultados demonstraram que o grupo obtive êxito no desenvolvimento da modelagem em 3D, na impressão em 3D, na simulação do circuito no Tinker Cad e na programação do "DanceBytes", apresentando algumas dificuldades que foram superadas por meio das aulas metodologias aplicadas adicionais, das que foram ministradas pelo professor orientador.

O Pensamento Computacional permitiu a organização dos requisitos necessários para a resolução dos problemas enfrentados no projeto, seguindo as metodologias.

Foram desenvolvidos os conceitos da física, da matemática, do pensamento estruturado, eletroeletrônica, da programação em C++ que permitiram a evolução e a conclusão do projeto.

A pesquisa apresentou soluções que respondem à questão de pesquisa, pois a estimulação do Pensamento Computacional e a Computação Aplicada à Robótica Educacional nos alunos e nas alunas permitiram uma abordagem mais significativa dos conteúdos e a inclusão das mulheres em projetos mais voltados para a ciência exatas.

Pretendemos adicionar mais funcionalidades que irão demandar por mais recursos de programação e de resolução dos problemas, que será o de promover o desenvolvimento do robô feminino incorporado ao projeto e de adicionar um controle remoto que permita uma maior interação aos que visitarem o nosso projeto de pesquisa.

Estas ações devem ser incentivadas no sentido de tornarem os alunos e as alunas protagonistas dos projetos que são de seus interesses.

AGRADECIMENTOS

Agradecemos aos nossos familiares pelo incentivo.

diversas proporcionar nos oportunidades através dos projetos oferecidos e ao PIPE.

A Prefeitura Municipal de São João da Barra, por nos proporcionar a representação da Cidade na FECTI.

A todo o time do LABMAKER do IFFSJB pelo espaço, apoio e materiais que nos foram disponibilizados.

Ao diretor de Pesquisa e de Extensão, Professor Pedro Henrique, em suas ações em apoio à pesquisa.

À FAPERJ por financiar os três bolsistas que integram este projeto de pesquisa.

toda a equipe pela dedicação, esforço e companheirismo em todos os momentos, principalmente, nos mais difíceis que foram enfrentados durante o projeto.

REFERÊNCIAS

ARDUINO. Arduíno, 2023. Disponível em: https://www.arduino.cc/. Acesso em 28 out. 2023.

BERBEL, Neusi Aparecida Nava; GAMBOA, Sílvio Ancízar Sánchez. A metodologia da problematização com o Arco de Maguerez: uma perspectiva teórica e epistemológica. 2011. PRESSMAN, Roger S. **Engenharia de Software**: uma abordagem profissional. 7º ed. Porto

Alegre: McGrawHill, 2011.

SILVA, L. C. L. (2019) A relação do Pensamento Computacional com o ensino de Matemática na Educação Básica. Dissertação(mestrado)-Universidade Estadual Paulista (Unesp), Faculdade de Ciências e Tecnologia, Presidente Prudente. Disponível em: https://repositorio.unesp.br/bitstream/handle/11449/191251/silva_lcl_me_sjrp.pdf?sequence=5&i sAllowed=y. Acesso em: 28 out. 2023.